Atomic vacancy as qubit at room temperature

Physicists from Julius-Maximilians-Universität Würzburg (JMU) in Germany, in cooperation with the Technical University of Sydney in Australia have now succeeded for the first time in experimentally demonstrating so-called spin centers in a boron nitride crystal.

In the layered crystal lattice of boron nitride the physicists found a special defect — a missing boron atom — which exhibits a magnetic dipole moment, also known as a spin. Furthermore, it can also absorb and emit light and is therefore also called color center. To study the magneto-optical properties of the quantum emitter in detail, JMU scientists have developed a special experimental technique that uses the combination of a static and a high-frequency magnetic field. Because it has a spin and additionally absorbs and emits light, it is a quantum bit (qubit) that can be used in quantum sensing and quantum information.

The results have been published in Nature Materials.

Read more.

Previous Article

Macroscopic-scale effects of quantum electronic coherence

Next Article

Honeywell to leapfrog rivals in quantum computer race

You might be interested in …

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

The reCAPTCHA verification period has expired. Please reload the page.