Ashish Moharana, PhD student in the research group of Professor Angela Wittmann, in front of the experimental setup. Credit: Shaktiranjan Mohanty

Electron Spin Control Through Chiral Molecules

Recent research at Johannes Gutenberg University Mainz has demonstrated that chiral molecules placed on gold surfaces can effectively control electron spin direction based on their handedness (left or right), offering a promising alternative to traditional magnetic methods for developing more efficient electronic devices.

Supramolecular dyads as photogenerated qubit candidates

Hydrogen Bonds Enable New Approach to Spin Qubit Assembly

Scientists have made a transformative discovery in quantum computing that challenges long-held assumptions about spin qubit assembly. The breakthrough research demonstrates that hydrogen bonds can effectively facilitate spin interactions between qubit components.

SiGeSn/GeSn multi-quantum-well structure.

Group IV Laser Bridges Silicon-Photonics Gap

In a groundbreaking development published in Nature Communications, an international research team has created the first electrically pumped continuous-wave semiconductor laser compatible with silicon integration. The device, constructed from group IV elements using stacked layers of silicon-germanium-tin and germanium-tin, operates with minimal power requirements comparable to an LED.

Christian Schneider

Christian Schneider’s Breakthrough in 2D Materials

Christian Schneider, a quantum physicist at the University of Oldenburg in Germany, has been awarded a prestigious European Research Council (ERC) Consolidator Grant of approximately two million euros for his groundbreaking research into two-dimensional materials […]

Unlocking the Nano Universe: A Quantum Leap in Magnetic Imaging

A Quantum Leap in Magnetic Imaging

Researchers from Martin Luther University Halle-Wittenberg (MLU) and the Max Planck Institute of Microstructure Physics in Halle have developed a groundbreaking method to analyze magnetic nanostructures with exceptional precision. This technique achieves a resolution of […]

The team in the laboratory: Birgit Stiller, Changlong Zhu and Claudiu Genes. Credit: Susanne Viezens

Innovative Breakthrough in Entangling Light and Sound

Scientists at the Max Planck Institute for the Science of Light (MPL) have developed a groundbreaking method for quantum entanglement that pairs photons with acoustic phonons through Brillouin scattering, marking a significant advance in quantum […]

360 erbium ion Qubits in a crystal membrane

The rare-earth element erbium could play a key role in future quantum networks: Researchers from the Max Planck Institute of Quantum Optics (MPQ) and the Technical University of Munich (TUM), led by Andreas Reiserer, have […]

Quantum simulators show resilience to errors

Theorists at the Max Planck Institute of Quantum Optics have made a significant stride in the field of quantum computing. Their research addresses a long-standing question: can quantum computers really outperform classical computers in solving […]