- Adiabatic quantum computation
- Anyon
- APC
- Automatic Polarization Compensation
- Bell states
- Black-Scholes model
- Bloch Sphere
- Boson sampling
- Braiding
- CHSH inequality
- Continuous-variable quantum computation
- EACC
- Entanglement-Assisted Classical Communication
- Gate Set Tomography
- GST
- Majorana zero modes
- No-cloning theorem
- Pauli Gates
- Phase Kickback
- QAOA
- QCNN
- QEC
- QIP
- QKD
- QML
- QNN
- Quantum Advantage
- Quantum annealing
- Quantum annealing cloud
- Quantum approximate optimization algorithm
- Quantum causality
- Quantum cloning
- Quantum coherence
- Quantum compiler
- Quantum computational supremacy
- Quantum contextuality
- Quantum Convolutional Neural Network
- Quantum cryptography
- Quantum Darwinism
- Quantum decoherence
- Quantum discord
- Quantum eraser
- Quantum error correction
- Quantum fingerprinting
- Quantum Fourier Transform
- Quantum gates
- Quantum key distribution
- Quantum logic gates
- Quantum machine learning
- Quantum metrology
- Quantum money
- Quantum neural networks
- Quantum non-demolition measurement
- Quantum nonlocality
- Quantum optics
- Quantum parallelism
- Quantum phase estimation
- Quantum phase transition
- Quantum processor
- Quantum radar
- Quantum repeater
- Quantum retrocausality
- Quantum simulation
- Quantum spin liquid
- Quantum state discrimination
- Quantum state tomography
- Quantum steering
- Quantum supremacy
- Quantum teleportation
- Quantum thermodynamics
- Quantum tomography
- Quantum virtual machine
- Quantum volume
- Quantum walks
- Quantum Zeno effect
- QVM
- Shor’s algorithm
- Squeezed states
- Stabilizer codes
- Superconducting qubits
- Superdense coding
- Superposition
- Surface code
- Topological quantum computation
- Trapped ion qubit
- Tsirelson’s bound
- Variational quantum eigensolver
- Vibronic coupling
- VQE

Chip Fabrication: Arsenic Atoms Transform Quantum Tech
UCL researchers have developed a groundbreaking technique using arsenic atoms in silicon that achieves a 97% success rate for single-atom placement (compared to phosphorus’s 70%), potentially solving quantum computing’s twin challenges of error rates and scalability through scanning tunneling microscopy hydrogen resist lithography.