Australian researchers have proven that near error-free quantum computing is possible, paving the way to build silicon-based quantum devices compatible with current semiconductor manufacturing technology.
Prof. Morello’s paper is one of three published today in Nature that independently confirm that robust, reliable quantum computing in silicon is now a reality. The breakthrough features on the front cover of the journal.
- Morello et al achieved one-qubit operation fidelities up to 99.95 per cent, and two-qubit fidelity of 99.37 per cent with a three-qubit system comprising an electron and two phosphorous atoms, introduced in silicon via ion implantation.
- A Delft team in the Netherlands led by Lieven Vandersypen achieved 99.87 per cent one-qubit and 99.65 per cent two-qubit fidelities using electron spins in quantum dots formed in a stack of silicon and silicon-germanium alloy (Si/SiGe).
- A RIKEN team in Japan led by Seigo Tarucha similarly achieved 99.84 per cent one-qubit and 99.51 per cent two-qubit fidelities in a two-electron system using Si/SiGe quantum dots.
The UNSW and Delft teams certified the performance of their quantum processors using a sophisticated method called gate set tomography, developed at Sandia National Laboratories in the U.S. and made openly available to the research community.