Professor Johannes Fink at the Institute of Science and Technology Austria (ISTA): A team of physicists from his group achieved a fully optical readout of superconducting qubits. Credit: © Nadine Poncioni | ISTA

Fiber Optics: The Missing Link in Quantum Computing’s Future

ISTA physicists have developed a breakthrough method to connect superconducting qubits using fiber optics instead of traditional electrical signals, significantly reducing cooling requirements and potentially enabling the scaling and networking of quantum computers by converting optical signals to microwave frequencies that qubits can process.

Emergence of a Second Law of Thermodynamics in Isolated Quantum Systems (Credit: TU Wien)

How Shannon Entropy Bridges Classical and Quantum Physics

Researchers resolved the apparent paradox between quantum mechanics and classical thermodynamics by demonstrating that while von Neumann entropy remains constant in quantum systems, Shannon entropy increases over time just as classical entropy does, thereby reconciling quantum theory with the second law of thermodynamics.

Quantum algorithms with a universal gate set.

Dynamic Quantum Error Correction Enables Real-Time Code Switching

Researchers have developed a groundbreaking method enabling quantum computers to switch between different error correction codes during computation, overcoming a fundamental limitation in quantum computing where no single code can efficiently perform all necessary operations while maintaining error protection.

The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria.

Entangled atoms cross quantum network from one lab to another

Trapped ions have previously only been entangled in one and the same laboratory. Now, teams have entangled two ions over a distance of 230 meters. The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.

Superconducting circuit (white) on a silicon substrate fixed in a copper holder. The chip (silver) with the micromechanical oscillator is attached to the silicon substrate.

Blast chiller for the quantum world

The quantum nature of objects visible to the naked eye is currently a much-discussed research question. A team has now demonstrated a new method in the laboratory that could make the quantum properties of macroscopic objects more accessible than before. With the method, the researchers were able to increase the efficiency of an established cooling method by an order of a magnitude.

Chaos gives the quantum world a temperature

Chaos gives the quantum world a temperature

Two seemingly different areas of physics are related in subtle ways: Quantum theory and thermodynamics. How can the laws of thermodynamics arise from the laws of quantum physics? This question has now been pursued with computer simulations, which showed that chaos plays a crucial role: Only where chaos prevails do the well-known rules of thermodynamics follow from quantum physics.

The team led by Wolfgang Lechner (right): Kilian Ender, Anette Messinger and Michael Fellner (from left).

New form of universal quantum computers

Computing power of quantum machines is currently still very low. Increasing it is still proving to be a major challenge. Physicists now present a new architecture for a universal quantum computer that overcomes such limitations and could be the basis of the next generation of quantum computers soon.

Physicists Silke Bühler-Paschen (left) of Vienna University of Technology and Qimiao Si of Rice University at Rice in November 2021. (Photo by Tommy LaVergne/Rice University)

Physicists use ‘electron correlations’ to control topological materials

Physicists have discovered how to switch topological states on and off in a strongly correlated metal using magnetic fields, a breakthrough made possible by the collective behavior of electrons that dramatically amplifies the material’s response to external magnetic fields and could enable new applications in quantum computing and sensor technology.