Quantum imaging protocol with photon pairs from a nonlinear metasurface.

Quantum Imaging Revolution: Metasurfaces Break Resolution Limits

Scientists at the ARC Centre of Excellence for Transformative Meta-Optical Systems have developed a groundbreaking quantum imaging technique using an ultra-thin nonlinear metasurface that generates spatially entangled photon pairs, eliminating the need for mechanical scanning and achieving resolution four orders of magnitude better than conventional systems, paving the way for compact quantum imaging applications in LiDAR, secure communication, and advanced sensing.

Antimony Atom Brings Schrödinger’s Cat to Life

UNSW researchers have achieved a significant breakthrough in quantum computing by implementing the Schrödinger’s cat thought experiment using an antimony atom, as published in Nature Physics. Led by Professor Andrea Morello, the team developed a […]

An artist's impression of a quantum microscope for study of chemical reactions and to identify molecular origin. Credit: Dr Mehran Kianinia

Australian Team Unveils Revolutionary Quantum Microscope

Australian scientists have developed a groundbreaking quantum microscope that uses atomically thin hexagonal boron nitride layers instead of traditional bulky crystals, enabling unprecedented imaging of electric currents, magnetic fields, and single molecules while simultaneously mapping temperature distributions under ambient conditions.

Heisenberg Limit

π-Corrected Heisenberg Limit

Researchers have proven that the Heisenberg limit as it is commonly stated is not operationally meaningful, and needs to be corrected by a factor of π.