Anahita Khodadad Kashi and Prof. Dr. Michael Kues demonstrated for the first time entanglement-based quantum key distribution using the frequency degree of freedom to enable scalable quantum networks. Credit: Leibniz University Hannover

Light-Based Quantum Networks: A Breakthrough in Secure Data

Scientists at Leibniz University Hannover have developed a cost-effective quantum network security system using frequency-bin coding of light particles, which reduces complexity and equipment costs by 75% while enhancing security against quantum computer threats through a simplified single-detector design that enables dynamic, scalable quantum key distribution.

Ashish Moharana, PhD student in the research group of Professor Angela Wittmann, in front of the experimental setup. Credit: Shaktiranjan Mohanty

Electron Spin Control Through Chiral Molecules

Recent research at Johannes Gutenberg University Mainz has demonstrated that chiral molecules placed on gold surfaces can effectively control electron spin direction based on their handedness (left or right), offering a promising alternative to traditional magnetic methods for developing more efficient electronic devices.

Supramolecular dyads as photogenerated qubit candidates

Hydrogen Bonds Enable New Approach to Spin Qubit Assembly

Scientists have made a transformative discovery in quantum computing that challenges long-held assumptions about spin qubit assembly. The breakthrough research demonstrates that hydrogen bonds can effectively facilitate spin interactions between qubit components.

SiGeSn/GeSn multi-quantum-well structure.

Group IV Laser Bridges Silicon-Photonics Gap

In a groundbreaking development published in Nature Communications, an international research team has created the first electrically pumped continuous-wave semiconductor laser compatible with silicon integration. The device, constructed from group IV elements using stacked layers of silicon-germanium-tin and germanium-tin, operates with minimal power requirements comparable to an LED.

Christian Schneider

Christian Schneider’s Breakthrough in 2D Materials

Christian Schneider, a quantum physicist at the University of Oldenburg in Germany, has been awarded a prestigious European Research Council (ERC) Consolidator Grant of approximately two million euros for his groundbreaking research into two-dimensional materials […]

Unlocking the Nano Universe: A Quantum Leap in Magnetic Imaging

A Quantum Leap in Magnetic Imaging

Researchers from Martin Luther University Halle-Wittenberg (MLU) and the Max Planck Institute of Microstructure Physics in Halle have developed a groundbreaking method to analyze magnetic nanostructures with exceptional precision. This technique achieves a resolution of […]

The team in the laboratory: Birgit Stiller, Changlong Zhu and Claudiu Genes. Credit: Susanne Viezens

Innovative Breakthrough in Entangling Light and Sound

Scientists at the Max Planck Institute for the Science of Light (MPL) have developed a groundbreaking method for quantum entanglement that pairs photons with acoustic phonons through Brillouin scattering, marking a significant advance in quantum […]

360 erbium ion Qubits in a crystal membrane

The rare-earth element erbium could play a key role in future quantum networks: Researchers from the Max Planck Institute of Quantum Optics (MPQ) and the Technical University of Munich (TUM), led by Andreas Reiserer, have […]

Quantum simulators show resilience to errors

Theorists at the Max Planck Institute of Quantum Optics have made a significant stride in the field of quantum computing. Their research addresses a long-standing question: can quantum computers really outperform classical computers in solving […]

Flux attachment for bosons on a lattice

Flux attachment provides a powerful conceptual framework for understanding certain forms of topological order, including most notably the fractional quantum Hall effect. Despite its ubiquitous use as a theoretical tool, directly realizing flux attachment in […]

Describing chaotic systems

Systems consisting of many small particles can be highly complex and chaotic – and yet some can still be described using simple theories. However, whether this also extends to the world of quantum physics has […]

First Quantum Talents Symposium in Munich

The Quantum Talents Symposium Munich is a joint initiative of the Max Planck Institute of Quantum Optics (MPQ), the Munich Center for Quantum Science and Technology (MCQST), the International Max Planck Research School for Quantum […]

Andreas Gritsch wins the Nano Innovation Award 2024

The LMU Center for NanoScience and four LMU spin-off companies present the Nano Innovation Award for particularly innovative doctoral theses. Andreas Gritsch, who completed his doctorate in the Otto Hahn Group Quantum Networks at MPQ, […]

Quantum transport from wave function snapshots

Researchers have studied nonequilibrium quantum dynamics of spin chains by employing principal component analysis (PCA) on data sets of wave function snapshots and examined how information propagates within these data sets. The quantities they have […]

The thermodynamics of quantum computing

The thermodynamics of quantum computing

Heat and computers do not mix well. If computers overheat, they do not work well or may even crash. But what about the quantum computers of the future? These high-performance devices are even more sensitive to heat. This is because their basic computational units — quantum bits or “qubits” — are based on highly-sensitive units, some of them individual atoms, and heat can be a crucial interference factor.

Artistic representation of a curved space using the example of the Heidelberg experiment. Curving the spacetime of the universe requires huge masses or energies. For the effective spacetime generated by a Bose-Einstein condensate, however, the research team only manipulated the density distribution of the condensate. In addition, expansion was simulated by adjusting the interaction between the atoms. | © Celia Viermann

Curved spacetime in the lab

In a laboratory experiment, researchers have succeeded in realizing an effective spacetime that can be manipulated. In their research on ultracold quantum gases, they were able to simulate an entire family of curved universes to investigate different cosmological scenarios and compare them with the predictions of a quantum field theoretical model.

Cryostat used to achieve temperatures down to 20 millikelvin. Source: HZDR/Jürgen Jeibmann

An exotic interplay of electrons

Water that simply will not freeze, no matter how cold it gets — a research group has discovered a quantum state that could be described in this way. Experts have managed to cool a special material to near absolute zero temperature. They found that a central property of atoms — their alignment — did not ‘freeze’, as usual, but remained in a ‘liquid’ state. The new quantum material could serve as a model system to develop novel, highly sensitive quantum sensors.

Quantum algorithms save time in the calculation of electron dynamics

Quantum Algorithms Break Ground in Molecular Computation

Quantum computers promise significantly shorter computing times for complex problems. But there are still only a few quantum computers worldwide with a limited number of so-called qubits. However, quantum computer algorithms can already run on conventional servers that simulate a quantum computer. A team has succeeded in calculating the electron orbitals and their dynamic development using an example of a small molecule after a laser pulse excitation.

Controlling the Waveform of Ultrashort Infrared Pulses

Ultrashort infrared light pulses are the key to a wide range of technological applications. The oscillating infrared light field can excite molecules in a sample to vibrate at specific frequencies, or drive ultrafast electric currents […]

Topological phase detected in spin chains

In a special arrangement of atomic spins, Max Planck physicists have measured the properties of the so-called Haldane phase in an experiment. To do so, they used a quantum mechanical trick. In some materials, there […]

More efficiency for optical quantum gates

Researchers at the Max Planck Institute of Quantum Optics succeeded in massively improving the performance of a component that is crucial to optical quantum systems. Future quantum computers are expected not only to solve particularly […]