Supramolecular dyads as photogenerated qubit candidates

Hydrogen Bonds Enable New Approach to Spin Qubit Assembly

Scientists have made a transformative discovery in quantum computing that challenges long-held assumptions about spin qubit assembly. The breakthrough research demonstrates that hydrogen bonds can effectively facilitate spin interactions between qubit components.

Protocol scheme with arbitrary modes.

High-dimensional coherent one-way Quantum Key Distribution (QKD)

Scientists have introduced and analyzed a high-dimensional QKD protocol that requires only standard two-dimensional hardware. They have provided security analysis against individual and coherent attacks, establishing upper and lower bounds on the secure key rates.

Hydrogen-induced transitions between disparate spin orders in MnSb2Te4.

Hydrogen Ion Manipulation Revolutionizes Quantum Material Control

A team of physicists at The City College of New York has demonstrated that introducing hydrogen ions (H⁺) into magnetic Weyl semimetal MnSb2Te4 can effectively tune its electronic properties and enhance electron chirality transport, leading to a tunable ‘chiral switch’ that doubles the Curie temperature and shows strong angular transport chirality, offering significant potential for quantum computing and nano-spintronics applications.

Northwestern University logo

Quantum Network Breakthrough: Less is More in Maintaining Quantum Links

Northwestern University researchers discovered that quantum networks can be maintained by adding just the square root number of new connections relative to total users after each communication event, offering a surprisingly efficient solution to the challenge of quantum links disappearing once used.

Quantum algorithms with a universal gate set.

Dynamic Quantum Error Correction Enables Real-Time Code Switching

Researchers have developed a groundbreaking method enabling quantum computers to switch between different error correction codes during computation, overcoming a fundamental limitation in quantum computing where no single code can efficiently perform all necessary operations while maintaining error protection.

Device geometry and spin-torque ferromagnetic resonance.

Novel Hall Torque Effect Paves Way for Brain-Like Computing

A groundbreaking discovery in quantum physics introduces the anomalous Hall torque – completing a triad of Universal Hall torques – which enables precise control of electron spin and magnetization in spintronic devices, paving the way for more efficient neuromorphic computing systems that mimic human brain functions.

Leon Ding, William Oliver, and David Rower. Credit: MIT

Record-Breaking 99.998% Quantum Gate Fidelity with Fluxonium Qubits

MIT researchers achieved a groundbreaking 99.998% single-qubit fidelity in quantum computing through innovative fluxonium qubit control techniques, combining commensurate pulses and synthetic circularly polarized light to overcome counter-rotating errors, marking a crucial advancement toward practical quantum error correction and fault-tolerant quantum computing.

Study authors P. James Schuck (left) and Chiara Trovatello from the Schuck lab at Columbia Engineering. Credit: Jane Nisselson/Columbia Engineering

Miniature Device Generates Entangled Photons in Breakthrough Design

This work represents the embodiment of the long-sought goal of bridging macroscopic and microscopic nonlinear and quantum optics,” says Schuck, who co-directs Columbia’s MS in Quantum Science and Technology. “It provides the foundation for scalable, highly efficient on-chip integrable devices such as tunable microscopic entangled-photon-pair generators.

The Tweezer Team at Durham University and their experimental apparatus. From left: Dr. Daniel Ruttley, Prof. Simon Cornish, Dr. Alexander Guttridge, and Mr. Tom Hepworth. Credit: Durham University

Scientists Achieve Record-Breaking Entanglement with Magic-Wavelength Tweezers

Quantum entanglement is a remarkable phenomenon where two particles become interconnected, so that the state of one instantly affects the other, no matter how far apart they are. This unique property is a cornerstone of quantum computing and a range of advanced technological applications. While entanglement has been achieved with atoms, achieving it with complex molecules is a significant step forward because molecules offer additional structures and properties, such as vibration and rotation, that can be leveraged in advanced quantum applications.

SiGeSn/GeSn multi-quantum-well structure.

Group IV Laser Bridges Silicon-Photonics Gap

In a groundbreaking development published in Nature Communications, an international research team has created the first electrically pumped continuous-wave semiconductor laser compatible with silicon integration. The device, constructed from group IV elements using stacked layers of silicon-germanium-tin and germanium-tin, operates with minimal power requirements comparable to an LED.

Schematic of the charger-battery setup

Dephasing enabled fast charging of quantum batteries

Researchers have analyzed a universal method to obtain fast charging of a quantum battery by a driven charger system using controlled, pure dephasing of the charger. While the battery displays coherent underdamped oscillations of energy […]

SandboxAQ Logo

SandboxAQ Secures $300M to Scale Large Quantitative Models

SandboxAQ has announced a significant funding round of over $300 million from prominent investors including Fred Alger Management, T. Rowe Price Associates, Mumtalakat, and notable individuals like Eric Schmidt, Marc Benioff and Yann LeCun. The […]

Professor Liang Feng and group members Xilin Feng, Tianwei Wu, and Shuang Wu, from left. Credit: Bella Ciervo

Quantum Physics Powers New Era of Ultra-Fast Optical Switches

Researchers at the University of Pennsylvania’s School of Engineering and Applied Science have developed a revolutionary photonic switch that transforms data transmission in fiber-optic networks. The switch, detailed in Nature Photonics, measures just 85 by […]