Antimony Atom Brings Schrödinger’s Cat to Life

UNSW researchers have achieved a significant breakthrough in quantum computing by implementing the Schrödinger’s cat thought experiment using an antimony atom, as published in Nature Physics. Led by Professor Andrea Morello, the team developed a […]

Schematic of the experimental setup including a spectrally-multiplexed photon pair source, a VIPA-based demultiplexer for mapping spectral modes to distinct spatial channels, and a Tm3+:LiNbO3-based spectral filter: APD - avalanche photodiode; DDG - digital delay generator; SNSPD - superconducting nanowire single photon detector; AD - achromatic Doublet (focusing lens coupling the output beam into collection fiber).

Towards a spectrally multiplexed quantum repeater

Extended quantum networks are based on quantum repeaters that often rely on the distribution of entanglement in an efficient and heralded fashion over multiple network nodes. Many repeater architectures require multiplexed sources of entangled photon […]

Quadrupolar Resonance Spectroscopy of Individual Nuclei Using a Room-Temperature Quantum Sensor

Engineers Break Ground with Single-Atom Detection Technology

Engineers at Penn Engineering have achieved a remarkable advancement in Nuclear Quadrupolar Resonance (NQR) spectroscopy, developing a technique capable of detecting signals from individual atoms. This breakthrough represents a significant leap forward from traditional methods […]

Semi-Dirac fermions at nodal-line crossing points in ZrSiS

Discovery of Semi-Dirac Fermions in ZrSiS Crystals

Scientists have made a groundbreaking discovery of semi-Dirac fermions, unique quasiparticles that exhibit both massless and massive behavior depending on their direction of movement. This discovery was made in crystals of the semi-metal ZrSiS by […]

Excitonic pairing and two-component FQHE

Fractional Exciton: A New Quantum Particle!

Scientists at Brown University have made a significant breakthrough by discovering a new class of quantum particles called fractional excitons, which display characteristics of both fermions and bosons. The research, published in Nature on January […]

Schematic of the setup

Demonstration of High-Fidelity Integrated Spin-Wave Quantum Storage

A significant advancement in quantum technology has been achieved through the successful demonstration of an integrated spin-wave quantum memory, addressing key challenges in photon transmission loss and noise suppression. This development is particularly crucial for […]

Leading-order Feynman diagrams for top-antitop pair production in the SM, where a double line represents a top particle: (a) q q ¯ channel; (b) g g channel. The two channels contribute roughly 10% and 90% of the total cross section respectively.

LHC’s Top Quarks Unlock Quantum Computing Magic

A breakthrough discovery by twin physicists Professors Chris and Martin White has revealed an unexpected connection between the Large Hadron Collider (LHC) and quantum computing through a property called “magic” in top quarks. Published in […]

process of multiparticle scattering mediated by twisted paths endowed with orbital angular momentum (OAM). The number of photons in each twisted path is measured and correlated using photon-number-resolving (PNR) detectors. Credit: Mingyuan Hong

Quantum Coherence Discovered in Classical Light

The scientific community has made a groundbreaking discovery that challenges our traditional understanding of classical and quantum physics. Researchers have identified quantum coherence within classical light fields, a finding that questions long-held assumptions about the […]

Quantum walk applications are divided into 4 main categories: quantum computing, quantum simulation, quantum information processing, and graph-theoretic applications. Credit: Xiaogang Qiang, Shixin Ma and Haijing Song

Quantum Walks: Next Frontier in Computational Intelligence

Quantum walks represent a revolutionary quantum computing paradigm that surpasses classical computational methods by leveraging fundamental quantum phenomena like superposition, interference, and entanglement. This technology has been comprehensively analyzed in recent research from China’s National […]

Bright Quantum-Grade Fluorescent Nanodiamonds

Next-Generation Nanodiamond Sensors Achieve Quantum-Grade Performance

Japanese researchers have achieved a significant advancement in quantum sensing technology by developing nanodiamond sensors that combine excellent brightness for bioimaging with quantum-grade spin properties comparable to bulk diamonds. This breakthrough, published in ACS Nano […]

Experimental setup for probing the EUR over a |OAM+1〉 qubit

New Aspect of Wave-Particle Duality

Linköping University researchers have experimentally validated a theoretical connection between quantum mechanics and information theory, specifically confirming a 2014 mathematical proposition from Singapore that links the complementarity principle to entropic uncertainty. This breakthrough bridges fundamental […]