Quantum communication chain within a network.

Composable Security Analysis of Gaussian Quantum Networks

A theoretical study advancing the composable security analysis of Gaussian quantum networks in finite-size regimes, introducing a novel parameter estimation methodology based on end-user data sharing, while demonstrating potential breakthroughs in surpassing the PLOB bound through quantum amplifier-assisted chains, though practical implementation remains challenging.

Source comparison for three main QKD schemes.

Enhancing quantum cryptography with quantum dot single-photon sources

Quantum dot-based single-photon sources offer superior security for quantum cryptography through their unique combination of on-demand emission, high brightness, low multiphoton contribution, and tunable coherence in photon-number states, outperforming traditional Poisson-distributed sources across multiple cryptographic primitives.

Experimental quantum homomorphic encryption

Experimental quantum homomorphic encryption

A team of researchers at Vienna Center for Quantum Science and Technology (VCQ) and Centre for Quantum Technologies, Singapore (CQT), has demonstrated homomorphic-encrypted quantum computing with unitary transformations of individual qubits, as well as multi-qubit quantum walk computations using single-photon states and non-birefringent integrated optics.