Anahita Khodadad Kashi and Prof. Dr. Michael Kues demonstrated for the first time entanglement-based quantum key distribution using the frequency degree of freedom to enable scalable quantum networks. Credit: Leibniz University Hannover

Light-Based Quantum Networks: A Breakthrough in Secure Data

Scientists at Leibniz University Hannover have developed a cost-effective quantum network security system using frequency-bin coding of light particles, which reduces complexity and equipment costs by 75% while enhancing security against quantum computer threats through a simplified single-detector design that enables dynamic, scalable quantum key distribution.

Oak Ridge National Laboratory collaborated with commercial utility EPB and the University of Tennessee Chattanooga to develop and test the first transmission of an entangled quantum signal using multiple wavelength channels and automatic polarization stabilization over a commercial network with no downtime. Credit: Morgan Manning/ORNL, U.S. Dept. of Energy

Quantum Network Achieves 100% Uptime on Commercial Fiber System

Scientists at Oak Ridge National Laboratory successfully transmitted entangled quantum signals without interruption over a commercial fiber-optic network using automatic polarization compensation, marking a crucial advance toward practical quantum internet development.

Professor Johannes Fink at the Institute of Science and Technology Austria (ISTA): A team of physicists from his group achieved a fully optical readout of superconducting qubits. Credit: © Nadine Poncioni | ISTA

Fiber Optics: The Missing Link in Quantum Computing’s Future

ISTA physicists have developed a breakthrough method to connect superconducting qubits using fiber optics instead of traditional electrical signals, significantly reducing cooling requirements and potentially enabling the scaling and networking of quantum computers by converting optical signals to microwave frequencies that qubits can process.

Proposed scheme for two-dimensional states generation.

MacZac: A High-Stability Time-Bin Encoder for Quantum Key Distribution

A novel quantum key distribution encoder called MacZac combines Sagnac and Mach-Zehnder interferometers with a single phase modulator to achieve exceptionally low error rates and high stability in time-bin encoded quantum communications, while simplifying the optical setup and eliminating the need for active compensation.

Protocol scheme with arbitrary modes.

High-dimensional coherent one-way Quantum Key Distribution (QKD)

Scientists have introduced and analyzed a high-dimensional QKD protocol that requires only standard two-dimensional hardware. They have provided security analysis against individual and coherent attacks, establishing upper and lower bounds on the secure key rates.

Northwestern University logo

Quantum Network Breakthrough: Less is More in Maintaining Quantum Links

Northwestern University researchers discovered that quantum networks can be maintained by adding just the square root number of new connections relative to total users after each communication event, offering a surprisingly efficient solution to the challenge of quantum links disappearing once used.

Professor Liang Feng and group members Xilin Feng, Tianwei Wu, and Shuang Wu, from left. Credit: Bella Ciervo

Quantum Physics Powers New Era of Ultra-Fast Optical Switches

Researchers at the University of Pennsylvania’s School of Engineering and Applied Science have developed a revolutionary photonic switch that transforms data transmission in fiber-optic networks. The switch, detailed in Nature Photonics, measures just 85 by […]

Schematic of the experimental setup including a spectrally-multiplexed photon pair source, a VIPA-based demultiplexer for mapping spectral modes to distinct spatial channels, and a Tm3+:LiNbO3-based spectral filter: APD - avalanche photodiode; DDG - digital delay generator; SNSPD - superconducting nanowire single photon detector; AD - achromatic Doublet (focusing lens coupling the output beam into collection fiber).

Towards a spectrally multiplexed quantum repeater

Extended quantum networks are based on quantum repeaters that often rely on the distribution of entanglement in an efficient and heralded fashion over multiple network nodes. Many repeater architectures require multiplexed sources of entangled photon […]

Roberto Morandotti. Credits : Josée Lecompte

Quantum research breakthrough uses synthetic dimensions to efficiently process quantum information

A new study opens the door to cutting-edge solutions that could contribute to the realization of a system capable of processing quantum information in a simple yet powerful way. The work presents a method for manipulating the photonic states of light in a never-before-seen way, offering greater control over the evolution of photon propagation. This control makes it possible to improve the detection and number of photon coincidences, as well as the efficiency of the system.

Scientists boost quantum signals while reducing noise

Scientists boost quantum signals while reducing noise

Researchers have developed a special type of amplifier that uses a technique known as squeezing to amplify quantum signals by a factor of 100 while reducing the noise that is inherent in quantum systems by an order of magnitude. Their device is the first to demonstrate squeezing over a broad frequency bandwidth of 1.75 gigahertz, nearly two orders of magnitude higher than other architectures.

The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria.

Entangled atoms cross quantum network from one lab to another

Trapped ions have previously only been entangled in one and the same laboratory. Now, teams have entangled two ions over a distance of 230 meters. The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.

The Carnot cycle is a general model of energy production that can be applied to any thermal energy source. Devised by the pioneering French physicist Sadi Carnot in 1824, when only steam engines were available, it can equally well be applied today to nuclear or solar power plants.

No ‘second law of entanglement’ after all

When two microscopic systems are entangled, their properties are linked to each other irrespective of the physical distance between the two. Manipulating this uniquely quantum phenomenon is what allows for quantum cryptography, communication, and computation. While parallels have been drawn between quantum entanglement and the classical physics of heat, new research demonstrates the limits of this comparison. Entanglement is even richer than we have given it credit for.

Long-range quantum key exchange with an untrusted satellite.

Long-range QKD without trusted nodes is not possible with current technology

The ARQ19 patent’s claim of achieving long-range quantum key distribution without trusted nodes is unfounded because it relies on an unexplained confidential classical channel between end users that cannot be quantum-based due to distance limitations, making the system’s security ultimately dependent on this non-quantum channel rather than achieving true quantum security.

Quantum communication chain within a network.

Composable Security Analysis of Gaussian Quantum Networks

A theoretical study advancing the composable security analysis of Gaussian quantum networks in finite-size regimes, introducing a novel parameter estimation methodology based on end-user data sharing, while demonstrating potential breakthroughs in surpassing the PLOB bound through quantum amplifier-assisted chains, though practical implementation remains challenging.

Source comparison for three main QKD schemes.

Enhancing quantum cryptography with quantum dot single-photon sources

Quantum dot-based single-photon sources offer superior security for quantum cryptography through their unique combination of on-demand emission, high brightness, low multiphoton contribution, and tunable coherence in photon-number states, outperforming traditional Poisson-distributed sources across multiple cryptographic primitives.