Scientists turn a hydrogen molecule into a quantum sensor

In the ultrahigh vacuum of a scanning tunneling microscope, a hydrogen molecule is held between the silver tip and sample. Femtosecond bursts of a terahertz laser excite the molecule, turning it into a quantum sensor. Credit: Wilson Ho Lab, UCI

Physicists at the University of California have demonstrated the use of a hydrogen molecule as a quantum sensor in a terahertz laser-equipped scanning tunneling microscope, a technique that can measure the chemical properties of materials at unprecedented time and spatial resolutions.

This new technique can also be applied to analysis of two-dimensional materials which have the potential to play a role in advanced energy systems, electronics and quantum computers.

The researchers describe how they positioned two bound atoms of hydrogen in between the silver tip of the STM and a sample composed of a flat copper surface arrayed with small islands of copper nitride. With pulses of the laser lasting trillionths of a second, the scientists were able to excite the hydrogen molecule and detect changes in its quantum states at cryogenic temperatures and in the ultrahigh vacuum environment of the instrument, rendering atomic-scale, time-lapsed images of the sample.

The paper has been published in Science.

Read more.

Previous Article

Autonomous quantum error correction in a four-photon Kerr parametric oscillator

Next Article

New hardware integrates mechanical devices into quantum tech

You might be interested in …

Leave a Reply

Your email address will not be published. Required fields are marked *