cientists have unlocked the full statistical fingerprint of quantum entanglement, enabling device testing without needing to know how those devices work. Credit: J-D Bancal (IPhT)

Decoding Quantum Entanglement: The Language of Hidden Statistics

This research fully maps the statistical outcomes of quantum entanglement, enabling complete description of partially entangled states through mathematical transformation, establishing theoretical limits of quantum physics while opening new avenues for secure quantum testing, communications, and computing without requiring assumptions about device properties.

Sketch of the open cavity magnonic system.

Cooperative-effect-induced one-way steering in open cavity magnonics

Researchers demonstrated a novel method to generate and control one-way quantum steering between photon and magnon modes in a non-Hermitian cavity magnonic system by leveraging the cooperative effects of coherent and dissipative coupling, achieving robust quantum correlations that can be precisely controlled through the relative phase of cooperative dissipation and magnon mode frequency detuning.