Experimental setup and NV center.

Nanoscale electric field imaging with an ambient scanning quantum sensor microscope

A team of researchers successfully developed a scanning probe quantum sensor using a single nitrogen-vacancy center at a diamond tip that can image both AC and DC electric fields at nanoscale resolution under ambient conditions, achieving sensitivities two orders of magnitude better than previous attempts and overcoming electric field screening through mechanical oscillation techniques.

Diamond NV center in a P1 bath.

Decoherence of nitrogen-vacancy spin ensembles in a nitrogen electron-nuclear spin bath in diamond

Quantum coherence in diamond-based NV centers, crucial for quantum computing applications, faces limitations from decoherence effects. This study examines how nitrogen impurities (P1 centers) impact NV-spin coherence using cluster correlation expansion and density functional theory. Results show T2 varies linearly with P1 concentrations (log scale, -1.06 slope), matching experimental data. The Jahn-Teller effect and hyperfine interactions significantly influence decoherence dynamics. These findings establish theoretical T2 limits across P1 densities, guiding material optimization for quantum devices.