Certified randomness using a trapped-ion quantum processor

Certified randomness using a trapped-ion quantum processor

Researchers have achieved a major quantum computing breakthrough by using a 56-qubit quantum computer to generate certifiably random numbers verified by classical supercomputers, marking a shift from theoretical quantum advantage to practical application with significant implications for cryptography, security, and fairness.

IonQ to acquire ID Quantique to form the world’s largest quantum-safe networks and quantum networking provider

IonQ to Acquire Controlling Stake in ID Quantique

IonQ is acquiring a controlling stake in quantum safe networking leader ID Quantique (IDQ) to strengthen its global quantum ecosystem, accelerate quantum networking development, and establish a strategic partnership with SK Telecom, with the acquisition expected to close in Q2 2025.

Long-range quantum key exchange with an untrusted satellite.

Long-range QKD without trusted nodes is not possible with current technology

The ARQ19 patent’s claim of achieving long-range quantum key distribution without trusted nodes is unfounded because it relies on an unexplained confidential classical channel between end users that cannot be quantum-based due to distance limitations, making the system’s security ultimately dependent on this non-quantum channel rather than achieving true quantum security.

Quantum communication chain within a network.

Composable Security Analysis of Gaussian Quantum Networks

A theoretical study advancing the composable security analysis of Gaussian quantum networks in finite-size regimes, introducing a novel parameter estimation methodology based on end-user data sharing, while demonstrating potential breakthroughs in surpassing the PLOB bound through quantum amplifier-assisted chains, though practical implementation remains challenging.

Source comparison for three main QKD schemes.

Enhancing quantum cryptography with quantum dot single-photon sources

Quantum dot-based single-photon sources offer superior security for quantum cryptography through their unique combination of on-demand emission, high brightness, low multiphoton contribution, and tunable coherence in photon-number states, outperforming traditional Poisson-distributed sources across multiple cryptographic primitives.

Levels of device assumptions.

Computing secure key rates for quantum cryptography with untrusted devices

A novel framework based on semidefinite programming provides universal security bounds for device-independent quantum key distribution by directly calculating von Neumann entropy using complete measurement statistics, enabling analysis of complex protocols beyond traditional CHSH inequality violations and extending to other device-independent cryptographic tasks.