Simulating two-dimensional lattice QED with matter fields.

Qudit Quantum Computing Breaks New Ground in Gauge Theory

Researchers from the University of Innsbruck and the University of Waterloo have achieved a breakthrough in quantum computing by using qudits (quantum units with multiple values) instead of traditional qubits to efficiently simulate quantum electrodynamics in two dimensions, demonstrating magnetic field interactions between particles and opening new possibilities for solving previously intractable problems in particle physics.

With only two levels of superposition, the qubits used in today’s quantum communication technologies have limited storage space and low tolerance for interference. The Feng Lab’s hyperdimensional microlaser (above) generates qudits, photons with four simultaneous levels of information. The increase in dimension makes for robust quantum communication technology better suited for real-world applications.

Microlaser chip adds new dimensions to quantum communication

Researchers at Penn Engineering have created a chip that outstrips the security and robustness of existing quantum communications hardware. Their technology communicates in “qudits,” doubling the quantum information space of any previous on-chip laser.

The micro-ring resonator, shown here as a closed loop, generated high-dimensional photon pairs. Researchers examined these photons by manipulating the phases of different frequencies, or colors, of light and mixing frequencies, as shown by the crisscrossed multicolor lines. Credit: Yun-Yi Pai/ORNL, U.S. Dept. of Energy

New measurements quantifying qudits provide glimpse of quantum future

A research team has developed an efficient method to measure high-dimensional qudits (advanced versions of qubits that can hold more information and are more noise-resistant) encoded in quantum frequency combs on a single optical chip, marking a significant advancement for quantum networks and communication systems.