Integrating a semiconducting quantum dot with a superconductor

An international research team has developed a groundbreaking technique to integrate superconductors with semiconductors by patterning platinum on germanium and heating it to form a superconducting alloy, demonstrating coherent quantum states that could enable hybrid quantum processors combining the scalability of semiconductor qubits with the long-range connectivity of superconducting circuits.

False-coloured scanning electron microscope image of a device nominally identical to that used in the measurements. The eight quantum dots arranged in a 4×2 array are labelled 1–8. The four larger quantum dots serve to probe the charge and spin states in the 4×2 array.

Distributing entanglement across germanium quantum dots

A QuTech research team demonstrated initialization, readout, and universal control of four qubits created from eight germanium quantum dots, achieving quantum information transfer with 75% Bell state fidelity and establishing a versatile platform for quantum computing advancement.

Connecting qubit islands with quantum bridges

Connecting qubit islands with quantum bridges

The groundbreaking research by QuTech represents a significant advancement in quantum computing technology, demonstrating the successful interconnection of spin qubits over unprecedented distances. By achieving coherent logic operations between qubits positioned 250 micrometers apart on […]

A rudimentary quantum network link between Dutch cities

The post A rudimentary quantum network link between Dutch cities appeared first on QuTech. An international research team led by QuTech has demonstrated a network connection between quantum processors over metropolitan distances. Their result marks […]

Spin qubits go trampolining

The post Spin qubits go trampolining appeared first on QuTech. Researchers at QuTech developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group […]

A route to scalable Majorana qubits

The post A route to scalable Majorana qubits appeared first on QuTech. Researchers at QuTech have found a way to make Majorana particles in a two-dimensional plane. This was achieved by creating devices that exploit […]

Cold chips can control qubits

QuTech has resolved a major issue on the road towards a working large-scale quantum computer. QuTech, together with Intel, has designed and fabricated an integrated circuit that can operate at extremely low temperatures when controlling […]