Enhancing Majorana stability with a three-site Kitaev chain

Scalable Kitaev Chains for Quantum Computing

A QuTech-led research team successfully created a three-site Kitaev chain in a hybrid InSb/Al nanowire that demonstrates enhanced stability of Majorana zero modes compared to two-site chains, marking significant progress toward scalable topological quantum computing.

High-precision quantum gates with diamond spin qubits

High-precision quantum gates with diamond spin qubits

QuTech researchers, collaborating with Fujitsu and Element Six, have achieved a significant quantum computing milestone by demonstrating diamond spin-based quantum gates with error rates below 0.1%—satisfying a critical threshold for quantum error correction and bringing us one step closer to scalable quantum computation.

QIA researchers create first Operating System for Quantum Networks

QNodeOS: Revolutionizing Quantum Networks

Researchers from the Quantum Internet Alliance have created QNodeOS, the first operating system for quantum networks, which abstracts hardware complexity to enable easier development of quantum networking applications across different hardware platforms, marking a crucial step toward making quantum internet technology accessible and practical.

Quantum Inspire 2.0 is live with updated software and hardware

Quantum Inspire 2.0 is live at QuTech

Quantum Inspire 2.0, Europe’s only freely accessible quantum cloud computer, now features an enhanced user interface, SDK integration, quantum-classical computing functionality, and two upgraded quantum processors—Starmon-7 and Spin2+—with improved qubit fidelity and performance, positioning the Netherlands at the forefront of quantum computing innovation.

Integrating a semiconducting quantum dot with a superconductor

An international research team has developed a groundbreaking technique to integrate superconductors with semiconductors by patterning platinum on germanium and heating it to form a superconducting alloy, demonstrating coherent quantum states that could enable hybrid quantum processors combining the scalability of semiconductor qubits with the long-range connectivity of superconducting circuits.

False-coloured scanning electron microscope image of a device nominally identical to that used in the measurements. The eight quantum dots arranged in a 4×2 array are labelled 1–8. The four larger quantum dots serve to probe the charge and spin states in the 4×2 array.

Distributing entanglement across germanium quantum dots

A QuTech research team demonstrated initialization, readout, and universal control of four qubits created from eight germanium quantum dots, achieving quantum information transfer with 75% Bell state fidelity and establishing a versatile platform for quantum computing advancement.

Connecting qubit islands with quantum bridges

Connecting qubit islands with quantum bridges

The groundbreaking research by QuTech represents a significant advancement in quantum computing technology, demonstrating the successful interconnection of spin qubits over unprecedented distances. By achieving coherent logic operations between qubits positioned 250 micrometers apart on […]

A rudimentary quantum network link between Dutch cities

The post A rudimentary quantum network link between Dutch cities appeared first on QuTech. An international research team led by QuTech has demonstrated a network connection between quantum processors over metropolitan distances. Their result marks […]

Spin qubits go trampolining

The post Spin qubits go trampolining appeared first on QuTech. Researchers at QuTech developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group […]

A route to scalable Majorana qubits

The post A route to scalable Majorana qubits appeared first on QuTech. Researchers at QuTech have found a way to make Majorana particles in a two-dimensional plane. This was achieved by creating devices that exploit […]

The Carnot cycle is a general model of energy production that can be applied to any thermal energy source. Devised by the pioneering French physicist Sadi Carnot in 1824, when only steam engines were available, it can equally well be applied today to nuclear or solar power plants.

No ‘second law of entanglement’ after all

When two microscopic systems are entangled, their properties are linked to each other irrespective of the physical distance between the two. Manipulating this uniquely quantum phenomenon is what allows for quantum cryptography, communication, and computation. While parallels have been drawn between quantum entanglement and the classical physics of heat, new research demonstrates the limits of this comparison. Entanglement is even richer than we have given it credit for.

Colloidal quantum dots with truncated cube shape and their original ligands (organic molecules) assembling into an ordered superlattice after the ligand exchange. | Illustration Jacopo Pinna

Breakthrough in Quantum Dot Metamaterials

Researchers at the University of Groningen led by Professor Maria Antonietta Loi have successfully created a highly conductive optoelectronic metamaterial by developing a method for quantum dots to self-organize into a three-dimensional superlattice that maintains their unique optical characteristics while achieving unprecedented electron mobility.

Full control of a six-qubit quantum processor in silicon

Full control of a six-qubit quantum processor in silicon

Researchers have engineered a record number of six, silicon-based, spin qubits in a fully interoperable array. Importantly, the qubits can be operated with a low error-rate that is achieved with a new chip design, an automated calibration procedure, and new methods for qubit initialization and readout.

Perfect photons feed new quantum processor - Credit: University of Twente

Perfect photons feed new quantum processor

A quantum processor working with photons developed at the University of Twente becomes an ever stronger ‘toolbox’ for doing experiments. The latest version not only has more inputs and outputs, it can also be fed […]