Do simulations represent the real world at the atomic scale?

Do simulations represent the real world at the atomic scale?

A team of scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, the University of Chicago and the University of California, developed a groundbreaking validation protocol for simulations of the atomic structure of the interface between a solid (a metal oxide) and liquid water.

he validation procedure they designed uses high-resolution X-ray reflectivity (XR) measurements as the experimental pillar of the protocol. The team compared XR measurements for an aluminum oxide/water interface, conducted at beamline 33-ID-D at Argonne’s Advanced Photon Source (APS), with results obtained by running high-performance computer simulations at the Argonne Leadership Computing Facility (ALCF). Both the APS and ALCF are DOE Office of Science User Facilities.

The simulations also shed new insight on the XR measurements themselves. In particular, they showed that the data are sensitive not only to the atomic positions, but also to the electron distribution surrounding each atom in subtle and complex ways. These insights will prove beneficial to future experiments on oxide/liquid interfaces.

The paper has been published in Physical Review Materials.

Read more.

The post Do simulations represent the real world at the atomic scale? appeared first on Swiss Quantum Hub.

Previous Article

Quantum Personality of The Year 2020 – Nominee: John Levy

Next Article

France announces a 1.8 billion euros Quantum Plan

You might be interested in …

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

The reCAPTCHA verification period has expired. Please reload the page.