Analysis of space-based entanglement distribution for the Quantum Internet

Analysis of space-based entanglement distribution for the Quantum Internet

Recent experimental breakthroughs in satellite quantum communications have opened up the possibility of creating a global Quantum Internet using satellite links.

This approach appears to be particularly viable in the near term, due to the lower attenuation of optical signals from satellite to ground, and due to the currently short coherence times of quantum memories. The latter prevents ground-based entanglement distribution using atmospheric or optical-fiber links at high rates over long distances.

A team of researchers has proposed a global-scale Quantum Internet consisting of a constellation of orbiting satellites that provides a continuous, on-demand entanglement distribution service to ground stations. The satellites can also function as untrusted nodes for the purpose of long-distance quantum-key distribution.

They have developed a technique for determining optimal satellite configurations with continuous coverage that balances both the total number of satellites and entanglement-distribution rates.

Using this technique, they determined various optimal satellite configurations for a polar-orbit constellation, and analyzed the resulting satellite-to-ground loss and achievable entanglement-distribution rates for multiple ground station configurations.

They have also provided a comparison between these entanglement-distribution rates and the rates of ground-based quantum repeater schemes.

This work provides the theoretical tools and the experimental guidance needed to make a satellite-based global Quantum Internet a reality.

The paper has been published in npj Quantum Information.

Read more.

The post Analysis of space-based entanglement distribution for the Quantum Internet appeared first on Swiss Quantum Hub.

Previous Article

Microsoft Azure Quantum is now in Public Preview

Next Article

Ilyas Khan – Quantum Personality of the Year 2020

You might be interested in …

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

The reCAPTCHA verification period has expired. Please reload the page.