January 19, 2025
Leading-order Feynman diagrams for top-antitop pair production in the SM, where a double line represents a top particle: (a) q q ¯ channel; (b) g g channel. The two channels contribute roughly 10% and 90% of the total cross section respectively.

LHC’s Top Quarks Unlock Quantum Computing Magic

A breakthrough discovery by twin physicists Professors Chris and Martin White has revealed an unexpected connection between the Large Hadron Collider (LHC) and quantum computing through a property called “magic” in top quarks. Published in […]

process of multiparticle scattering mediated by twisted paths endowed with orbital angular momentum (OAM). The number of photons in each twisted path is measured and correlated using photon-number-resolving (PNR) detectors. Credit: Mingyuan Hong

Quantum Coherence Discovered in Classical Light

The scientific community has made a groundbreaking discovery that challenges our traditional understanding of classical and quantum physics. Researchers have identified quantum coherence within classical light fields, a finding that questions long-held assumptions about the […]

Quantum walk applications are divided into 4 main categories: quantum computing, quantum simulation, quantum information processing, and graph-theoretic applications. Credit: Xiaogang Qiang, Shixin Ma and Haijing Song

Quantum Walks: Next Frontier in Computational Intelligence

Quantum walks represent a revolutionary quantum computing paradigm that surpasses classical computational methods by leveraging fundamental quantum phenomena like superposition, interference, and entanglement. This technology has been comprehensively analyzed in recent research from China’s National […]