January 18, 2025
Quantum walk applications are divided into 4 main categories: quantum computing, quantum simulation, quantum information processing, and graph-theoretic applications. Credit: Xiaogang Qiang, Shixin Ma and Haijing Song

Quantum Walks: Next Frontier in Computational Intelligence

Quantum walks represent a revolutionary quantum computing paradigm that surpasses classical computational methods by leveraging fundamental quantum phenomena like superposition, interference, and entanglement. This technology has been comprehensively analyzed in recent research from China’s National […]

Orbital Angular Momentum Quantum-based VQE – Hydrogen (H2) Molecule / A quantum processing device based on orbital angular momentum qubit states is implemented by using spatial light modulators. The ground state energy of a H2 molecular model based is estimated on VQE.

AI and Quantum Computing Revolutionize Molecular Science

The landscape of scientific research is rapidly transforming through groundbreaking advancements in artificial intelligence and quantum computing, with recent developments promising revolutionary impacts across multiple disciplines. The Nobel Prize in Chemistry has recognized the pivotal […]

Evolution paths of the single control qubit on the Bloch sphere in the hybrid approach to Grover’s algorithm. Credit: Sinitsyn, N. and Yan, B., Topologically protected Grover’s oracle for the partition problem. Physical Review A 108, 022412

A Hybrid Approach to Overcoming Computational Challenge

Quantum computing represents a revolutionary frontier in computational technology, promising unprecedented computational power. However, the field has long grappled with significant technical challenges that have limited its practical implementation. This research introduces an innovative hybrid […]

Comparison of V-scores of VQE ansatzes versus energy relative errors on a 10 sites TFIM.

V-Score: A New Benchmark for Quantum and Classical Computing

Scientists are developing innovative ways to benchmark the potential of quantum computing in solving complex scientific problems, particularly in understanding material systems. The research, led by physicist Giuseppe Carleo at the Swiss Federal Institute of […]

The chain complex relevant to the distance balancing construction.

Local testability of distance-balanced quantum codes

npj Quantum Information, Published online: 20 November 2024; doi:10.1038/s41534-024-00908-8 In this paper, scientists proved a lower bound on the soundness of quantum locally testable codes under the distance balancing construction of Evra et al. Their […]

New benchmark helps solve the hardest quantum problems

New benchmark helps solve the hardest quantum problems

Predicting the behavior of many interacting quantum particles is a complicated process but is key to harness quantum computing for real-world applications. Researchers have developed a method for comparing quantum algorithms and identifying which quantum […]

bias-preserving foliation

Tailored cluster states with high threshold under biased noise

Fault-tolerant cluster states form the basis for scalable measurement-based quantum computation. Recently, new stabilizer codes for scalable circuit-based quantum computation have been introduced that have very high thresholds under biased noise where the qubit predominantly […]