Diamond quantum sensor detects ‘magnetic flow’ excited by heat

Recently, magnons (units of electron spin excitation waves) have been considered for information processing. Especially, utilizing thermally excited energetic magnons have been of interest. In parallel, the demand for faster and energy-efficient electronic devices has brought attention to quantum devices using quantum spin state in diamond, which can surpass conventional performance. Now, researchers have successfully measured thermal magnon currents mediated by coherent magnon with a tiny diamond quantum sensor, paving the way for the realization of a hybrid system of quantum spin states and thermal spintronic devices.

Read More

Quantum Computers News — ScienceDaily

Previous Article

Bristol team chase down advantage in quantum race

Next Article

Optimal control of stimulated Raman adiabatic passage in a superconducting qudit

You might be interested in …

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

The reCAPTCHA verification period has expired. Please reload the page.