Quantum mathematicians at the University of Copenhagen have solved a mathematical riddle that allows for a person’s geographical location to be used as a personal ID that is secure against even the most advanced cyber attacks.
For nearly twenty years, researchers around the world have been trying to solve the riddle of how to securely determine a person’s geographical location and use it as a secure ID. Until now, this had not been possible by way of normal methods like GPS tracking.
Using the laws of quantum physics, the researchers developed a new security protocol that uses a person’s geographical location to guarantee that they are communicating with the right person. Position-based quantum encryption, as it is called, can be used to ensure that a person is speaking with an actual bank representative when the bank calls and asks a customer to make changes to their account.
The researchers’ recipe for securing a person’s location combines the information in a single qubit followed by classical bits, consisting of the ones and zeroes that we are familiar with from ordinary computers.
Both types of bits are needed to send a message that is impossible for cybercriminals to read, hack or manipulate, and which can confirm whether a person is in your bank’s office or in some far-off country.
The quantum bit serves as a kind of lock on the message, due to the role of Heisenberg’s Uncertainty Principle in quantum physics, which causes quantum information to be disrupted and impossible to decode when trying to measure it. It is also due to what is known as the “no-cloning theorem,” which makes quantum information impossible to intercept and secretly copy. This will remain the case for quite some time.
The researchers highlight the fact that the new method is particularly handy because only a single quantum bit is needed for position verification. So, unlike many other quantum technologies that require further development, this new discovery can be put to use today. Suitable quantum sources that can send a quantum bit of light already exist. (TechXPlore)
The research has just been published in Nature Physics.