Machine learning for molecular simulation

Superposição, a interferência da medição e o entrelaçamento

Researchers at Freie Universität Berlin and Rice University, Texas, reviewed recent ML (Machine Learning) methods for molecular simulation, with particular focus on (deep) neural networks for the prediction of quantum-mechanical energies and forces, coarse-grained molecular dynamics, the extraction of free energy surfaces and kinetics and generative network approaches to sample molecular equilibrium structures and compute thermodynamics.

To explain these methods and illustrate open methodological problems, they reviewed some important principles of molecular physics and described how they can be incorporated into machine learning structures. They identified and described a list of open challenges for the interface between ML and molecular simulation. (Rice University)

Read more.

Previous Article

Hybrid Quantum-Classical Convolutional Neural Networks

Next Article

Quantum states created in everyday electronics

You might be interested in …

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

The reCAPTCHA verification period has expired. Please reload the page.