For the first time, University of Chicago researchers have created a hybrid array of neutral atoms from two different elements, significantly broadening the system’s potential applications in quantum technology.
While manmade qubits such as superconducting circuits require quality control to stay perfectly consistent, neutral atoms made from a single element all have exactly the same properties, making them ideal, consistent candidates for qubits.
But since every atom in the array has the same properties, it’s extremely difficult to measure a single atom without disturbing its neighbors—they’re all on the same frequency, so to speak.
In a hybrid array made of atoms of two different elements, any atom’s nearest neighbors can be atoms of the other element, with completely different frequencies. This makes it much easier for researchers to measure and manipulate a single atom without any interference from the atoms around it.
It also allows researchers to sidestep a standard complication of atomic arrays: it is very difficult to hold an atom in one place for very long.
The hybrid array created contains 512 lasers: 256 loaded with cesium atoms and 256 with rubidium atoms. As quantum computers go, this is a lot of qubits: Google and IBM, whose quantum computers are made of superconducting circuits rather than trapped atoms, have only gotten up to about 130 qubits. Though this device is not yet a quantum computer, quantum computers made from atomic arrays are much easier to scale up, which could lead to some important new insights.
The hybrid nature of this array also opens the door to many applications that wouldn’t be possible with a single species of atom. Since the two species are independently controllable, the atoms of one element can be used as quantum memory while the other can be used to make quantum computations, taking on the respective roles of RAM and a CPU on a typical computer. (Phys.org)
The work has been published in Physical Review X.