Left: The 2DEG chip measured in these experiments (top) connected to a chip containing electrical resonators (bottom), that enable fast calibrations. Right: Electron microscope image of a nanoscale device used to study Majoranas. Voltages applied to the thin electrodes (or gates) are used to create quantum dots at the positions indicated by dashed circles. Small strips made of superconducting Aluminum allow for turning the chain of three quantum dots into a so-called Kitaev chain.

Quantum Dots Unlock Majorana States for Stable Computing

QuTech researchers in Delft created a controlled system of three quantum dots that successfully demonstrated the properties of Majorana bound states—exotic quantum particles that could enable more stable quantum computing through their unique ability to be manipulated and moved between locations while maintaining resistance to errors.