December 20, 2024

Entanglement unlocks scaling for quantum machine learning

Entanglement unlocks scaling for quantum machine learning

The field of machine learning on quantum computers got a boost from new research removing a potential roadblock to the practical implementation of quantum neural networks. While theorists had previously believed an exponentially large training set would be required to train a quantum neural network, the quantum No-Free-Lunch theorem developed by Los Alamos National Laboratory shows that quantum entanglement eliminates this exponential overhead.

The classical No-Free-Lunch theorem states that any machine-learning algorithm is as good as, but no better than, any other when their performance is averaged over all possible functions connecting the data to their labels. A direct consequence of this theorem that showcases the power of data in classical machine learning is that the more data one has, the better the average performance. Thus, data is the currency in machine learning that ultimately limits performance.

The theorem shows that in the quantum regime entanglement is also a currency, and one that can be exchanged for data to reduce data requirements.

Using a Rigetti quantum computer, the team entangled the quantum data set with a reference system to verify the new theorem. (Phys.org)

The paper has been published in Physical Review Letters.

Read more.