New cooling technique to nanokelvin temperatures

MIT physicists have found a way to cool molecules of sodium lithium down to 220 nanokelvins, just a hair above absolute zero. They did so by applying a technique called collisional cooling, in which they immersed molecules of cold sodium lithium in a cloud of even colder sodium atoms. The ultracold atoms acted as a refrigerant to cool the molecules even further.

Collisional cooling is a standard technique used to cool down atoms using other, colder atoms. And for more than a decade, researchers have attempted to supercool a number of different molecules using collisional cooling, only to find that when molecules collided with atoms, they exchanged energy in such a way that the molecules were heated or destroyed in the process, called “bad” collisions.

In their own experiments, the MIT researchers found that if sodium lithium molecules and sodium atoms were made to spin in the same way, they could avoid self-destructing, and instead engaged in “good” collisions, where the atoms took away the molecules’ energy, in the form of heat. (SciTechDaily)

Their findings have been published in the journal Nature.

Read more.

Previous Article

Coupled Quantum Dots may allow to store quantum information

Next Article

CaixaBank quantum classifies customers according to their credit risk

You might be interested in …

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

The reCAPTCHA verification period has expired. Please reload the page.