Scientists achieve key elements for fault-tolerant quantum computation in silicon spin qubits

Researchers have achieved a key milestone toward the development of a fault-tolerant quantum computer. They were able to demonstrate a two-qubit gate fidelity of 99.5 percent — higher than the 99 percent considered to be the threshold for building fault-tolerant computers — using electron spin qubits in silicon, which are promising for large-scale quantum computers as the nanofabrication technology for building them already exists.

Read More

Quantum Computers News — ScienceDaily

Previous Article

Quantum computing in silicon hits 99% accuracy

Next Article

Designing quantum networks using preexisting infrastructure

You might be interested in …

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

The reCAPTCHA verification period has expired. Please reload the page.